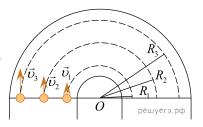
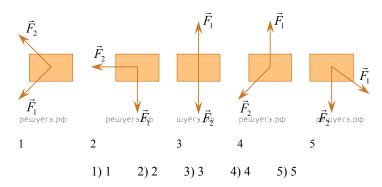

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида $(1,4\pm0,2)$ Н записывайте следующим образом: 1,40,2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

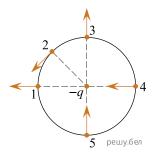

1. Для проверки спидометра автомобиля водитель держал постоянную скорость, ориентируясь по показаниям спидометра (см. рис.). Если за промежуток времени $\Delta t = 0,25$ ч автомобиль проехал путь s = 33 км, то спидометр:

- 1) занижает скорость на 12 км/ч 2) занижает скорость на 6 км/ч 3) работает точно 4) завышает скорость на 6 км/ч 5) завышает скорость на 12 км/ч
- **2.** На рисунке изображены положения шарика, равномерно движущегося вдоль оси Ox, в моменты времени t_1 , t_2 , t_3 . Момент времени t_3 равен:



3. Три мотогонщика равномерно движутся по закруглённому участку гоночной трассы, совершая поворот на 180° (см. рис.). Модули их скоростей движения $\upsilon_1=20$ м/с, $\upsilon_2=25$ м/с, $\upsilon_3=30$ м/с, а радиусы кривизны траекторий $R_1=12$ м, $R_2=20$ м, $R_3=28$ м. Промежутки времени $\Delta t_1, \ \Delta t_2, \ \Delta t_3, \$ 3а которые мотогонщики проедут поворот, связаны соотношением:

1)
$$\Delta t_1 = \Delta t_2 = \Delta t_3$$
 2) $\Delta t_1 > \Delta t_2 > \Delta t_3$ 3) $\Delta t_1 < \Delta t_2 < \Delta t_3$
4) $\Delta t_1 > \Delta t_2 = \Delta t_3$ 5) $\Delta t_1 = \Delta t_2 > \Delta t_3$


4. К телу приложены силы \vec{F}_1 и \vec{F}_2 , лежащие в плоскости рисунка. Направления сил изменяются, но их модули остаются постоянными. Наибольшее ускорение а тело приобретет в ситуации, обозначенной на рисунке цифрой:

5. Три вагона, сцепленные друг с другом и движущиеся со скоростью, модуль которой $\nu_0 = 3,6 \; \frac{M}{c},$ столкнулись с тремя неподвижными вагонами. Если массы всех вагонов одинаковы, то после срабатывания автосцепки модуль их скорости у будет равен:

- 1) 1,2 $\frac{M}{C}$
- 2) 1,4 $\frac{M}{C}$ 3) 1,8 $\frac{M}{C}$ 4) 2,5 $\frac{M}{C}$

6. Правильные направления векторов \vec{E} напряжённости электростатического поля, создаваемого отрицательным точечным зарядом -q, указаны на рисунке в точках, обозначенных цифрами:

- 1) 1;
- 2) 2;
- 3) 3;
- 4) 4; 5) 5.

7. Если абсолютная температура тела изменилась на $\Delta T = 70 \text{ K}$, то изменение его температуры Δt по шкале Цельсия равно:

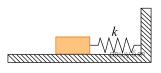
- 1) $\frac{273}{70}$ °C 2) $\frac{70}{273}$ °C 3) 343 °C 4) 203 °C 5) 70 °C

8. При изохорном нагревании идеального газа, количество вещества которого постоянно, температура газа изменилась от $T_1 = 300 \; \mathrm{K}$ до $T_2 = 440 \; \mathrm{K}$. Если начальное давление газа $p_1 = 150 \text{ к}\Pi \text{а}$, то конечное давление p_2 газа равно:

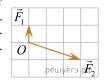
- 1) 180 κΠa
- 2) 190 кПа 3) 200 κΠa 5) 220 κΠa
- 4) 210 κΠa

9. В герметично закрытом сосуде находится аргон, количество вещества которого v = 7,00 моль. Если за некоторый промежуток времени внутренняя энергии газа изменилась на $\Delta U = -9,60$ кДж, то изменение температуры Δt аргона равно:

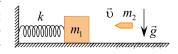
- 2) -110 °C
- 3) 110 °C
- 4) 165 °C
- 5) 248 °C


10. В паспорте солнечной батареи приведены следующие технические характеристики:

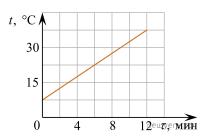
- 1) 7,36 A;
- 2) 230 BT;
- 3) 20,4 кг; 4) 14,3 %;
- 5) 31,25 B.


Параметр, характеризующий силу тока, указан в строке, номер которой: 3)3

- 1) 1
- 2)2
- 4) 4
- 5)5


11. Горизонтальный пружинный маятник (см. рис.) совершает свободные гармонические колебания с амплитудой A=2,0 см. Если жёсткость пружины k=165 H/м, то максимальная кинетическая энергия $(W_{\rm k})_{\rm max}$ маятника равна ... мДж.

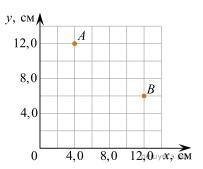
12. На покоящуюся материальную точку O начинают действовать две силы $\vec{F_1}$ и $\vec{F_2}$ (см.рис.), причём модуль первой силы $F_1=2$ Н. Материальная точка останется в состоянии покоя, если к ней приложить третью силу, модуль которой F_3 равен ... **H**.



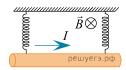
- **13.** Трактор при вспашке горизонтального участка поля двигался равномерно со скоростью, модуль которой $\upsilon=3,6$ км/ч, и за промежуток времени $\varDelta t=1,4$ ч израсходовал топливо массой $\mathit{m}=15$ кг ($\mathit{q}=42$ МДж/кг). Если модуль силы тяги трактора $\mathit{F}=25$ кH, то коэффициент полезного действия трактора η равен ... %.
- **14.** В брусок массы $m_1 = 2,0$ кг, лежавший на гладкой горизонтальной поверхности и прикрепленный к вертикальному упору легкой пружиной жесткости k = 1,6 кН/м, попадает и застревает в нем пуля массы $m_2 = 10$ г,

летевшая со скоростью, модуль которой $\upsilon=60$ м/с, направленной вдоль оси пружины (см. рис.). Максимальное значение модуля абсолютного удлинения $\Delta l_{\rm max}$ пружины равно ... мм.

- **15.** Идеальный одноатомный газ, масса которого m=6,00 кг находится в сосуде под давлением $p=2,00\cdot 10^5$ Па. Если вместимость сосуда V=3,60 м³, то средняя квадратичная скорость $<\upsilon_{\rm KB}>$ движения молекул газа равна ... $\frac{\rm M}{c}$.
- **16.** На рисунке приведён график зависимости температуры t тела ($c=1000~\rm{Дж/(кr^{\cdot}{}^{\circ}C)}$) от времени τ . Если к телу ежесекундно подводилось количество теплоты $Q_0=1,0~\rm{Дж}$, то масса m тела равна ... Γ .

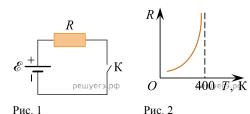

17. Сосуд, содержащий парафин (c = 3,20 кДж/(кг·К), $\lambda = 150$ кДж/кг), поставили на электрическую плитку и сразу же начали измерять температуру содержимого сосуда. Измерения прекратили, когда парафин полностью расплавился. В таблице представлены результаты измерений температуры парафина.

Температура T , °C	24,0	34,0	44,0	54,0	54,0	 54,0
Время t, с	0,00	20,0	40,0	60,0	80	 153,8


Если мощность электроплитки P=750 Вт, а коэффициент ее полезного действия $\eta=64,0$ %, то масса m парафина равна... \mathbf{r} . Ответ округлите до целого.

18. На горизонтальной поверхности Земли стоит человек, возле ног которого лежит маленькое плоское зеркало. Глаза человека находятся на уровне H=1,5 м от поверхности Земли. Если угол падения солнечных лучей на горизонтальную поверхность $\alpha=60^\circ$, то человек увидит отражение Солнца в зеркале, когда он отойдёт от зеркала на расстояние l, равное ... дм.

19. Если точечный заряд $q=6,00~{\rm HK}$ л, находящийся в вакууме, помещен в точку A (см.рис.), то потенциал электростатического поля, созданного этим зарядом, в точке B равен ... В.


20. В однородном магнитном поле, модуль индукции которого B=0.15 Тл, на двух одинаковых невесомых пружинах жёсткостью k=15 Н/м подвешен в горизонтальном положении прямой однородный проводник длиной L=1.0 м (см. рис.). Линии магнитной индукции горизонтальны и перпендикулярны проводнику. Если

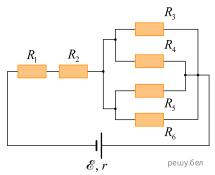
при отсутствии тока в проводнике длина каждой пружины была $x_1 = 37$ см, то после того, как по проводнику пошёл ток I = 10 А, длина каждой пружины x_2 в равновесном положении стала равной ... см.

21. Электрический нагреватель подключен к электрической сети, напряжение в которой изменяется по гармоническому закону. Действующее значение напряжения в сети $U_{\rm д}=127~{\rm B.}$ Если амплитудное значение силы тока в цепи $I_0=0,20~{\rm A},$ то нагреватель потребляет мощность P, равную ... **Вт**.

22. В электрической цепи, схема которой приведена на рисунке 1, ЭДС источника тока $\varepsilon=5,0$ B, а его внутреннее сопротивление пренебрежимо мало. Сопротивление резистора R зависит от температуры Т. Бесконечно большим оно становится при $T\geqslant 400$ K (см. рис. 2).

Удельная теплоемкость материала, из которого изготовлен резистор, $c=1000~\frac{\rm Дж}{\rm кг\cdot K}$, масса резистора m=4,0 г. Если теплообмен резистора с окружающей средой отсутствует, а начальная температура резистора $T_0=320~\rm K$, то после замыкания ключа К через резистор протечет заряд q, равный ... Кл.

23. На дифракционную решётку нормально падает белый свет. Если для излучения с длиной волны $\lambda_1=480$ нм дифракционный максимум третьего порядка ($m_1=3$) наблюдается под углом θ , то максимум четвертого порядка ($m_2=4$) под таким же углом θ будет наблюдаться для излучения с длиной волны λ_2 , равной? Ответ приведите нанометрах.


24. Для исследования лимфотока пациенту ввели препарат, содержащий $N_0=80~000$ ядер радиоактивного изотопа золота $^{198}_{79}{
m Au}$. Если период полураспада этого изотопа $T_{1\over 2}=2,7~{
m cyt.}$, то за промежуток времени $\Delta t=8,1~{
m cyt.}$ распадётся ... тысяч ядер $^{198}_{79}{
m Au}$.

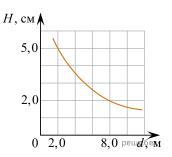
25. Сила тока в резисторе сопротивлением R=16 Ом зависит от времени t по закону I(t)=B+Ct, где B=6,0 A, C=-0,50 $\frac{\rm A}{\rm c}$. В момент времени $t_1=10$ с тепловая мощность P, выделяемая в резисторе, равна ... Вт.

26. Резистор сопротивлением R=10 Ом подключён к источнику тока с ЭДС $\mathcal{E}=13$ В и внутренним сопротивлением r=3,0 Ом. Работа электрического тока A на внешнем участке электрической цепи, совершённая за промежуток времени $\Delta t=9,0$ с, равна ... Дж.

27.

На рисунке изображена схема электрической цепи, состоящей из источника тока и шести одинаковых резисторов

$$R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = 10,0 \text{ Om.}$$


В резисторе R_6 выделяется тепловая мощность $P_6=90.0$ Вт. Если внутреннее сопротивление источника тока r=4.00 Ом, то ЭДС $\mathcal E$ источника тока равна ... В.

- **28.** Электрон, модуль скорости которого $\upsilon=1,0\cdot 10^6~\frac{\rm M}{\rm c}$, движется по окружности в однородном магнитном поле. Если на электрон действует сила Лоренца, модуль которой $F_{\rm JI}=6,4\cdot 10^{-15}~{\rm H},$ то модуль индукции B магнитного поля равен ... мТл.
- **29.** В идеальном колебательном контуре, состоящем из конденсатора и катушки, индуктивность которой L=0,20 мГн, происходят свободные электромагнитные колебания. Если циклическая частота электромагнитных колебаний $\omega=1,0\cdot 10^4~\frac{\mathrm{pag}}{\mathrm{c}}$, то ёмкость C конденсатора равна ... мкФ.

30.

График зависимости высоты H изображения карандаша, полученного с помощью тонкой рассеивающей линзы, от расстояния d между линзой и карандашом показан на рисунке. Модуль фокусного расстояния |F| рассеивающей линзы равен ... дм.

Примечание. Карандаш расположен перпендикулярно главной оптической оси линзы.

